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ABSTRACT

We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with
accurate parallaxes, using a vector spherical harmonic formalism.We derive simple relations between the parameters
of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general
vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with
respect to the local stars of (VX ; VY ; VZ) ¼ (10:5; 18:5; 7:3) � 0:1 km s�1 not corrected for the asymmetric drift with
respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is
(VX ; VY ; VZ ) ¼ (9:9; 15:6; 6:9) � 0:2 km s�1. The adverse effects of harmonic leakage, which occurs between the
reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics
in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential
components for each star. The Oort parameters determined by a straightforward least-squares adjustment in vector
spherical harmonics are A ¼ 14:0 � 1:4, B ¼ �13:1 � 1:2, K ¼ 1:1 � 1:8, and C ¼ �2:9 � 1:4 km s�1 kpc�1.
The physical meaning and the implications of these parameters are discussed in the framework of a general linear
model of the velocity field.We find a few statistically significant higher degree harmonic terms that do not correspond
to any parameters in the classical linear model. One of them, a third-degree electric harmonic, is tentatively explained
as the response to a negative linear gradient of rotation velocity with distance from the Galactic plane, which we
estimate at ��20 km s�1 kpc�1. A similar vertical gradient of rotation velocity has been detected for more distant
stars representing the thick disk (z > 1 kpc), but here we surmise its existence in the thin disk at z < 200 pc. The most
unexpected and unexplained term within the Ogorodnikov-Milne model is the first-degree magnetic harmonic,
representing a rigid rotation of the stellar field about the axis �Y pointing opposite to the direction of rotation. This
harmonic comes out with a statistically robust coefficient of 6:2 � 0:9 km s�1 kpc�1 and is also present in the
velocity field of more distant stars. The ensuing upward vertical motion of stars in the general direction of the Ga-
lactic center and the downward motion in the anticenter direction are opposite to the vector field expected from the
stationary Galactic warp model.
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1. INTRODUCTION

The growing amount and quality of available astrometric data
and the widening horizons of the astrometrically known Galaxy
have begun to call for more general and accurate models of the
Galactic velocity field than the classical Oort and Lindblad ap-
proximation. The classical Oort constants A and B, representing
the local angular velocity of rotation and its radial gradient, have
been determined many times on different data sets with increasing
accuracy, but only the advent of the Hipparcos catalog (Perryman
et al. 1997) made it possible to put this estimation on a systemati-
cally rigid, global reference frame related to a nonrotating extra-
galactic frame. A somewhat heuristic generalization of the Oort
formalism, known as the Ogorodnikov-Milne model (OMM;
Ogorodnikov 1932;Milne 1935), describes the local field of stel-
lar velocities as a combination of all six possible shears and three
rigid rotations, incorporating the A and B parameters and adding
seven more degrees of freedom to the fitting model. Not all of
these additional parameters have a clear physical meaning in terms
of Galactic dynamics. To our knowledge, only two additional
coefficients (K and C ) have been given close attention in the re-
cent literature. The remaining fiveOMMparameters have been tac-
itly considered nonessential and presumably small. Furthermore,

as a linear approximation to a complex and, on a large scale,
nonlinearGalactic velocity field, theOort formalismand theOMM
are meaningful only locally, within reasonably small distances
from the Sun. As we expand the limits of precision astrometric cat-
alogs, we inevitably encounter significant deviations from the lin-
ear model. Following the suggestion of Olling &Merrifield (1998)
one could consider the OMM parameters to be functions of helio-
centric distance or, in a more general approach, of Galactic cylin-
drical coordinates. Alternatively, as we investigate in this paper,
one can use a more versatile formalism for describing the observed
velocity field in order to put this problem on a more rigorous and
systematic footing.

The paper byVityazev&Shuksto (2004) marked an important
advance in the search for a better way to describe the systematic
field of tangential velocities derived fromHipparcos proper mo-
tions and parallaxes for tens of thousands of stars. They em-
ployed vector spherical harmonic functions, which constitute an
orthogonal basis for the space of continuous vector functions on
a unit sphere. When sampled over a large and sufficiently uni-
form set of points on the celestial sphere, the discretized vector
harmonic functions remain nearly orthogonal, which makes the
fitting algorithm the most stable and accurate in implementation.
Since the Oort and OMM parameters turn out to be simply the
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fitting coefficients of the corresponding low-degree vector har-
monic functions, the physical meaning and interpretation of the
estimated quantities remain straightforward and simple. The math-
ematical formulation allows us not only to accurately estimate the
uncertainties associated with the estimated parameters (arising
mostly from the stochastic component of the velocity field), but
also—for the first time—to investigate the covariances. But the
main advantage of this method is that it is easily expandable to
handle more complex and nonlinear fields. The aims of this paper
are (1) by using the vector harmonic method, to redetermine the
fundamental parameters of the local velocity field in a rigorous
fashion, viz., the peculiar solar velocity and the differential rota-
tion coefficients A and B; (2) to estimate other OMM parameters;
and (3) to find out if the observed velocity field bears statistically
significant, higher degree non-OMM harmonic terms that may
reveal interesting dynamical phenomena such as vertical rotation
gradients, Galactic warp, and large streams of stars.

2. THE PECULIAR VELOCITY OF THE SUN

The dynamic LSR is defined as a fictitious point currently at
the position of the Sun in the Galactic plane, which moves along
a perfectly circular orbit in a hypothetical axisymmetric potential.
This definition is a mere theoretical concept, because the Galactic
potential is not exactly axisymmetric and there are no perfectly
circular orbits. An alternative empirical definition of the LSR is
the average motion of a sufficiently large, sufficiently homoge-
neous, and sufficiently dynamically mixed sample of stars cen-
tered on the Sun. These two definitions are quite different and in
fact are contradictory with regard to the shape of the reference
orbit. Indeed, the empirical average reference orbit is markedly
eccentric due to the stellar age-dependent asymmetric drift (see
Fig. 1). The relative velocity of the Sun with respect to the em-
pirical LSR is directly derived from our heliocentric astrometric
observations, whereas determination of the solar peculiar velocity
with respect to the hypothetical circular orbit is more involved
(Mihalas & Binney 1981; Dehnen & Binney 1998; Binney &
Tremaine 1987) and relies on additional astrophysical or dy-
namical considerations.

If the Sun moves with a velocity V� ¼ (VX ; VY ; VZ) relative
to the average motion of the local stars, the heliocentric velocity
field of these stars contains a streaming motion in the opposite

direction, that is,�V�. As far as tangential velocity components
are concerned, this streaming motion is a dipolar vector field on
the celestial sphere, and its exact representation via vector
spherical harmonics (see eq. [A5]) is

v� ¼ VXE
1
1 þ VYE

�1
1 � VZE

0
1 : ð1Þ

Thus, the signature of the solar motion is confined to the first
three electric harmonics only. We see in subsequent paragraphs
that the other fundamental parameters of the velocity field are
represented by magnetic harmonics and electric harmonics of a
higher degree, so this effect is clearly separated in the vector har-
monic space. It is worth noting that V� is estimated from tan-
gential velocities in physical units, i.e., from �/�, where � is the
proper-motion magnitude and � is the parallax. A small admix-
ture of halo stars and runaway stars with very high spatial veloc-
ities can perturb this determination.
We start with selecting 42,487 stars from the main Hipparcos

catalog with statistically robust parallaxes [� /� (�) > 5] and
without any indicators of binarity. To avoid extra-high-velocity
perturbers, we reject 148 stars with tangential velocities greater
than 150 km s�1 in either Galactic component. A set of 24 vector
harmonic functions is then fitted to the global vector field of
42,339 stars by a direct least-squares solution. The solar velocity
components are simply read from the fitted coefficients of the first
three electric harmonics. The results of this estimation are spec-
ified in Table 1, along with a sample of more distant stars with
� > 10 mas (24,327 stars).
The estimated velocity components VX and VZ are fairly sim-

ilar for the two samples, indicating a negligible dependence on
distance. They are also very close to the determination by Dehnen
&Binney (1998). The estimates of VY (in the direction of Galactic
rotation) are very different between the two samples, beyond the
possibility of a statistical fluke. Themore distant stars move faster
with respect to the Sun than the stars closer in. In either case, the
stars move slower in this direction by more than 10 km s�1 than
the circular motion of the LSR determined by Dehnen & Binney
(1998). This very prominent effect is attributed to the asymmet-
ric drift of nearby stars. Generally, there are three different physi-
cal and technical kinds of reasons for our estimation of VY to be
biased:

1. The asymmetric drift.
2. The vertical gradient of rotational velocity �(z).
3. The mixing of nonorthogonal harmonics.

3. THE PHYSICAL MEANING OF OORT’S CONSTANTS

As long as a relatively small local area of the Galaxy around
the Sun is considered (rTR0, where R0 is the galactocentric dis-
tance of the Sun), it is appropriate to expand the systemic velocity
field of stars in a Taylor series over the galactocentric cylindrical
coordinates (�; �; z). Assuming that the local field is planar, that
is, all systemic motions are in the Galactic plane, the velocity
vector v(�; �; z) ¼ a(�; � )þ w(�; �; z), where the former

Fig. 1.—Dependence of mean orbital eccentricity on stellar age. Data are ex-
tracted from the Geneva-Copenhagen spectroscopic survey of Hipparcos stars
(Nordström et al. 2004).

TABLE 1

Determination of the Centroid Velocity of the Sun

Component � < 10 mas All Stars

VX = e11 ................. 9.9 � 0.2 10.5 � 0.1

VY = e�1
1 ............... 15.6 � 0.2 18.5 � 0.1

VZ = �e01 .............. 6.9 � 0.2 7.3 � 0.1
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component a is radial with respect to the Galactic center, and the
latter,w, is tangential and orthogonal to the former. Note that the
radial component is assumed to be independent of z, that is, that
there is no radial systemicmotion, depending on the distance from
the plane. Retaining only first-degree terms in the corresponding
Taylor expansion, one can write

a(�; � ) ¼ a0 þ � �� �0ð Þ þ � sin �� �0ð Þ;
!(�; �; z) ¼ !0 þ � �� �0ð Þ þ 	 sin �� �0ð Þ þ �(z); ð2Þ

where the subscript 0 denotes the corresponding parameters at
the Sun’s location (�0; �0; z0). We left the dependence of the
rotational velocity ! on z in its generic form, since on physical
grounds, this dependence is expected to be symmetric around the
plane and cannot be represented by a simple linear term.

Retaining only terms to O(r /�0), these model relations can be
rewritten more conveniently in the heliocentric coordinates
(r; ‘; b) introduced in Appendix A:

a(r) ¼ a0 � �r cos ‘ cos bþ �
r

�0
sin ‘ cos b;

!(r) ¼ !0 � �r cos ‘ cos bþ 	
r

�0
sin ‘ cos bþ �(z): ð3Þ

Apart from the reflex peculiar motion of the Sun treated in x 2,
we observe the heliocentric velocity field �v ¼ aþ w� a0�
w0. Projections of this vector field onto the local tangential co-
ordinate frames (t‘; tb) introduced in Appendix A are

�v = t‘ ¼
!(r)

2�0
r cos 2‘ cos b� !(r)

2�0
r cos bþ !(r)� !0½ � cos ‘

þ a(r)

2�0
r sin 2‘ cos bþ a(r)� a0½ � sin ‘;

�v = tb ¼ � !(r)

2�0
r sin 2‘ cos b sin b� !(r)� !0½ � sin ‘ sin b

� a(r)

2�0
r cos b sin bþ a(r)

2�0
r cos 2‘ cos b sin b

þ a(r)� a0½ � cos ‘ sin b: ð4Þ

Substituting the model in equation (3) into equations (4) and
retaining only terms toO(r /�0), we obtain after some toil the gen-
eral expansion

�v ¼ !0

2�0
� �

2
� �

2�0

� �
r
1

6
E�2
2 þ � !0

2�0
� �

2
þ �

2�0

� �
rH 0

1

þ a0

2�0
� �

2
� 	

2�0

� �
r
1

6
E2
2 þ � a0

2�0
� �

2
� 	

2�0

� �
r
1

3
E0
2

þ �(z)

2�0
r
1

6
E�2
2 � �(z)

2�0
rH 0

1 � �(z)E�1
1 ; ð5Þ

where we made use of the functional forms of the vector spher-
ical harmonics in Galactic coordinates specified in Appendix A.
Disregarding for now the�(z) terms, let us compare this equation
with the classical expansion of the velocity field via the funda-
mental Oort constants (e.g., Torra et al. 2000), which in the vec-
tor harmonics notation takes the form

4:741rm ¼ A =
1

6
E�2
2 þ B = H 0

1 þ C =
1

6
E2
2 � K =

1

3
E0
2 : ð6Þ

Hence, in our more general model, the Oort constants can be de-
fined as

A ¼ !0

2�0
� �

2
� �

2�0
; ð7Þ

B ¼ � !0

2�0
� �

2
þ �

2�0
; ð8Þ

C ¼ a0

2�0
� �

2
� 	

2�0
; ð9Þ

K ¼ a0

2�0
þ �

2
þ 	

2�0
: ð10Þ

The slope of the local rotational velocity curve is readily de-
rived as� ¼ �(Aþ B). Since most of the recent andHipparcos-
based estimations arrive at A � �B, the rotation curve is locally
almost (but not exactly) flat. It is also usually adopted that the
local angular rotation velocity �̇0 is just the difference of the
constants A and B. In fact, however,

�̇0 ¼
!0

�0
¼ A� Bþ �

�0
: ð11Þ

So, the local azimuthal shear of the radial motion � contrib-
utes to the constants A and B and affects the determination of the
angular velocity of the Galaxy. Presumably, this shear is small
(�T!0), and our estimations are not hampered too much. The
interpretation of the constantsC andK is more complicated. Tra-
ditionally, the C-constant is called the shear and the K-constant
the local expansion (or dilation). In fact, we find that

C þ K ¼ a0

�0
; ð12Þ

K � C ¼ � þ 	

�0
: ð13Þ

Presumably, there is no outward or inward bulk motion of stars
around the Sun (a0 ¼ 0), and the centroid of a large homogenous
heliocentric sample of stars moves on a circular orbit. In nu-
merous and somewhat conflicting determinations, it appears that,
generally, C 6¼ �K, which indicates a nonzero systemic eccen-
tricity of the local field. It is especially important in this case to
accurately predict the uncertainties of estimation, which may be
larger than the estimates, as discussed in x 4. The dilation is bet-
ter characterized by the difference K�C in equation (13), where
� can be interpreted as the radial heliocentric expansion and 	 /�0
as the azimuthal expansion. These two components cannot be sep-
arated from proper motions alone.

4. PARAMETERS OF THE VELOCITY FIELD

Using the vector harmonic formalism to describe the tangen-
tial velocity field on the celestial sphere (Appendix A) and the
general expression for the OMM (eq. [B5]) makes the estima-
tion of model parameters quite straightforward. The Hipparcos
proper motions for our initial set of 42,339 nonbinary stars with
accurate parallaxes are converted to tangential velocities in the
Galactic coordinate system. Each velocity vector generates two
condition equations, one for the longitudinal component t‘ and
the other for the latitudinal component tb. The coefficients of ex-
pansion (5) are the unknowns of the condition equations, which
are solved by the least-squares method. The main source of the
solution uncertainty is the physical dispersion of individual
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velocity vectors related to peculiar orbital motions, since the
astrometric errors of proper motions are small in the Hipparcos
catalog, and the number of stars is large. The velocity dispersion
is known to increase with age; it is also larger for thick-disk stars
than for thin-disk stars. Instead of dealing with triaxial dispersion
ellipsoids for various stellar populations, we take an empirical and
robust approach to error estimation in this least-squares adjust-
ment. We fit 24 vector harmonic functions up to degree 4 to the
general vector field and consider this expansion to represent the
systemic part of the velocity field. The residuals of the tangential
velocity vectors represent the stochastic part of the field. Dis-
persions of velocities are computed from these residuals, sepa-
rately for the t‘ and tb components, as half-differences between
the 0.84 and 0.16 quantiles on each distribution. These quantities
substitute standard deviation parameters for the markedly non-
Gaussian velocity distributions. The resulting dispersions are
�(v‘) ¼ 24:0 km s�1 and �(vb) ¼ 16:1 km s�1. The condition
equations in longitude and in latitude are weighted with these
quantities, respectively.

There are a few important technical notes to be made on this
estimation problem. The solar peculiar velocity vector is determined
directly from the tangential velocity field, expressed in units of
kilometers per second (x 2), in which case only the first three
electric harmonics are of essence. The Oort or OMM parameters
describe a velocity field that grows linearly with distance from the
Sun and has distance r in its functional form (eq. [B2]). The cor-
responding decomposition is done in the proper-motion field, or,
as we do it in this paper, the tangential velocities can be used in
the observational part of the equations, but the harmonic functions
are premultiplied with distances for each star. In the latter case, the
distribution of sample stars on distance is taken into account
automatically, and the harmonic coefficients have the desired di-
mension of km s�1 kpc�1. But before performing this distance-
weighted least-squares estimation, the relative velocity of the Sun
with respect to the stellar centroid should be subtracted for each
star. This step proves to be of crucial importance because of the
adverse effects of the harmonic leakage discussed in x 4.1.

The results of vector harmonic estimation are specified inTable 2
for the original set of 42,339 stars, and for 24,327 stars more dis-
tant than 100 pc. All harmonic coefficients corresponding to OMM
parameters are shown, as well as other statistically significant co-
efficients that have no counterparts in the linear model. By sta-
tistically significant we conservatively mean a quantity larger
than its formal error multiplied by 2.5. Having the significance so
defined, we state that only three or four model OMM parameters
are significant, plus three extra nonlinear parameters. The esti-
mated parameters agree very well between the two sets, indicat-
ing no considerable dependence of the velocity field on distance
within this fairly small volume. The slope of the rotation curve,
using the results for the larger sample, is � ¼ �(Aþ B) ¼
�1:0 � 1:8 km s�1 kpc�1. This implies that the speed of rota-
tion declines very slightlywith galactocentric distance, but the con-
clusion is not reliable statistically. From equation (11), ignoring
the possible contamination by the azimuthal shear �, the local
angular rotation is A� B ¼ 27:1 � 1:8 km s�1 kpc�1, in fine
agreement with Feast &Whitelock (1997). Assuming a distance
�0 ¼ 7:9 kpc for the Sun (see Vallée 2005 and references therein),
the speed of rotation is !0 ¼ 214 � 14 km s�1.

The K-constant is insignificant for both samples, but the
C-constant is marginally significant, especially for more distant
stars. The systemic outward motion a0 ¼ �0(C þ K ) appears to
be negligible for the general sample, but the more distant stars
seem to exhibit an inward motion of a0 ¼ �42 � 20 km s�1.
This result is qualitatively consistent with the estimation by

Hanson (1987), who found a progressively smaller solar velocity
toward the Galactic center with respect to stars at higher lat-
itudes. If this inward motion in the outer part of the astrometri-
cally knownGalaxy is real, it may be somewhat counterbalanced
by the small but persistent dilation (expansion) of the local stel-
lar aggregate, at K � C ’ 4 � 2 km s�1 kpc�1. Associations of
young stars expand by virtue of their initial velocity dispersions
(Makarov et al. 2004), and the presence of the young local as-
sociation could be invoked to explain the local expansion. It is
worth emphasizing that the accuracy of the available astrometric
data on the local stellar field is still insufficient to establish these
subtle effects with certainty. In fact, the barely noticeable K- and
C-constants may be related to the intermediate-scale streams of
stars permeating the solar neighborhood, rather than to the gen-
eral pattern of Galactic rotation. Famaey et al. (2005) presented
a scrutiny of such streams or superclusters, based on the best
available radial velocity and astrometry data for K and M giants,
including the Hyades, Sirius, Hercules, and B streams. Apart
from strong evidence for asymmetric drift for evolved stars, they
find, interestingly enough, that the centroid velocity of the Sun,VX ,
with respect to giants is’10 km s�1, in agreement with our present
and other previous estimations, but it drops to only ’3 km s�1

when all the major streams are excluded. This difference may be
interpreted as a net outward radial motion of the streams (see also
their Table 1). Famaey et al. (2005) pointed out that the members
of these streams have a spread of ages and other physical charac-
teristics, and the streamsmust be dynamically induced. The authors
raise the question of how the standard solar motion can actually be
defined if the motion of even the oldest and supposedly dynami-
cally mixed stellar population is subject to unknown dynamical
agents perturbing their orbits. We think that the stellar streams are
legitimate parts of the local velocity field and that it makes sense to
define the velocity centroid and the solar peculiar motion in much
the same way as it has been done before, keeping in mind that dy-
namicalmixing and relaxation, aswell as a circularlymovingLSR,
may be a mere theoretical idealization.

4.1. Harmonic Leakage

As specified in Table 2, we find only three significant terms in
the general vector harmonic decomposition beyond theOMM, viz.,
H�1

2
, E�1

3 , and E2
4 . All other estimated harmonics, including all

TABLE 2

Determination of OMM and Higher Degree Parameters

of the Local Velocity Field

Parameter � < 10 mas All Stars

L13 = h�1
1 .............. 5.91 � 1.02 (5.8) 6.21 � 0.94 (6.6)

L12 = B = h01 ........ �12.36 � 1.26 (9.8) �13.36 � 1.16 (11.5)

L23 = �h11 ............. 0.13 � 0.97 (0.1) �0.36 � 0.89 (0.4)

M12 = A = 6e�2
2 .... 14.08 � 1.56 (9.2) 13.83 � 1.42 (9.8)

M23 = �3e�1
2 ........ 0.38 � 1.37 (0.3) 0.76 � 1.25 (0.6)

X2 = K = �3e02 ..... �0.63 � 1.98 (0.3) 1.02 � 1.81 (0.6)

M13 = �3e12 .......... �0.32 � 1.38 (0.2) �2.13 � 1.27 (1.7)

X1 = C = 6e22 ........ �4.72 � 1.64 (3.1) �3.03 � 1.43 (2.1)

Other Significant Parameters

e�1
1 ........................ �0.81 � 1.28 (0.6) 11.25 � 1.17 (9.6)

h�1
2 ........................ �1.69 � 0.44 (3.8) �1.20 � 0.41 (2.9)

e�1
3 ........................ 0.52 � 0.24 (2.2) 0.80 � 0.22 (3.7)

e24 .......................... �0.075 � 0.041 (1.9) �0.100 � 0.037 (2.7)

Notes.—All parameters and their formal standard errors are specified in
km s�1 kpc�1; the signal-to-noise ratio is given in parentheses. A solar velocity
V� ¼ (9:9; 15:6; 6:9) km s�1 was subtracted for both sets of stars.
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third- and fourth-degree terms, are well below 2.5 �. Thus, we
find little evidence of nonlinear patterns in the motion of local
stars. The actual velocity field progressively deviates from the
linear approximation of the model with heliocentric distance.
Furthermore, the rotation curve may have local wiggles and cur-
vature, as discussed in Olling & Merrifield (1998). One way of
tackling this problem is to build a more complex model in which
the Oort constants are actually functions of coordinates, to be de-
termined from observations. We take a different approach in this
paper, determining empirically a vector harmonic decomposition
and trying to interpret those terms that appear to be statistically
significant.

Before embarking on analysis of the emerging nonlinear har-
monics (and the unexpected linear termH�1

1 ), we should examine
a technical but crucial problem in the determination of model
parameters. The stellar velocity field bears a strong signal in the
classical terms representing the reflex solar motion and the Oort
constants A and B. These terms are represented in our model by
specific vector harmonics (Appendix B). The strong signal in the
physicallymeaningful low-degree harmonics in the velocity space
can leak into higher degree vector harmonics in the proper-motion
space, resulting in spurious detections of nonlinear effects. This
inevitably happens because the sampled vector harmonics are not
independent for any inhomogeneous discrete set of points. This
problem has two somewhat different aspects. In classical appli-
cations, when only proper motions are known from observation,
the mean parallax of nearby stars varies across the sky because of
the real clumps in number density (e.g., the Gould Belt, large as-
sociations, and spiral arms), as well as the nonuniform inter-
stellar extinction. This difficulty was first spotted by Edmondson
(1937) and later investigated in more detail by Olling & Dehnen
(2003). The latter paper presents a nice example of how the lon-
gitudinal variation of the mean parallax, described by a Fourier
series, makes the solar motion dipolar pattern contribute to the
terms that would be empirically defined as the A- and B-constants.
Our analysis is free of this complication, because we use accurate
trigonometric parallaxes from the Hipparcos catalog and perform
the estimations of the solar motion in the velocity space and of
model parameters separately in the proper-motion space.But there
is another, more basic reason to be concerned about the harmonic
leakage. The lack of uniformity in the number density of stars
on the sky itself makes the vector harmonics mutually dependent
within either coordinate component.

Mathematically, the problem can be viewed as a lack of orthog-
onality of the sampled harmonics. The degree of nonorthogonality
is quantified by the correlation coefficients readily computed
from the off-diagonal elements of the covariance matrix. For our
nearby stars, the largest physical effect is the solar motion ex-
pressed by the first-degree electric harmonics, and the cross talk
of these termswith other harmonics of higher degreemay generate
false-positive detections.

We set up a dedicated numerical experiment to prove that this
contamination may happen unless appropriate precautions are
taken. We use the same general set of Hipparcos stars as before,
but the actual observed proper motions are replaced with simu-
lated vectors computed from the reflex solar motion only, esti-
mated in x 2. A harmonic decomposition of the simulated velocity
field produces the same velocity dipole in the first electric har-
monics, and zero for the rest of the harmonics, which only shows
that the software works correctly. But when a similar decompo-
sition is carried out in the space of distance-weighted harmonics,
as described in x 4, a number of spurious terms emerge, viz.,H�1

2

(significance level 8.8�),H 0
2 (5.4�),H

2
2 (3.2�),E

�3
3 (8.9�),E�1

3

(4.0 �),E0
3 (7.6 �),E2

3 (8.7 �), and E3
3 (3.8 �). The appearance of

theH�1
2 andE�1

3 harmonics is especially worrisome because they
may carry some physical information, as discussed in subsequent
paragraphs. The simplest way to get rid of most of the harmonic
leakage effect is to subtract the reflex solar motion from all tan-
gential velocities prior to a model parameter fitting. Ideally this
eliminates the perturbations from the dominating dipolar terms.
Note that existing correlations between the sampled distance-
weighted vector harmonics that we use to determine OMM pa-
rameters do not affect the results in a systematic way, because
the least-squares solution is unbiased. The major adverse effect
of these correlations is an enhanced propagation of random and
possibly systematic errors from our observational data.

5. VERTICAL GRADIENT OF ROTATIONAL VELOCITY

The apparent relative velocity of the Sun in the direction of
Galactic rotation (VY ;�) varies with distance of reference field
stars from the Galactic plane. This remarkable fact was estab-
lished by Hanson (1989) from proper motions of fairly distant
stars, and recently confirmed by Girard et al. (2006), who used
absolute proper motions of giant stars in the direction of the
south Galactic pole. The thick disk dominates between z ¼ 1 and
3 kpc, where the rotational lag of field stars is found to follow a
nearly linear dependence on vertical height, accompanied, pre-
dictably, by a growth of velocity dispersion in the X-direction.
The slope of the lag, from both cited papers, is estimated at
�30 km s�1 kpc�1. Girard et al. also offered a dynamical inter-
pretation of this phenomenon, finding it consistent with a general
model of the Galactic potential. The sample of nearbyHipparcos
stars considered in this paper is practically limited to 200 pc and is
dominated by thin-disk stars. Is there a similar vertical gradient of
rotational velocity for the thin disk?

Evidently, from equation (A2), a vertical lag affects the de-
termination of the centroid velocity VY expressed by the dipole
vector harmonic E�1

1 , because �(z) is negative everywhere ex-
cept z ¼ 0. If the velocity of rotation falls off with increasing z,
the relative solar velocity VY ;� should grow with distance due to
the admixture of high-z stars. This is not what we find in Table 1,
where the more distant stars (� < 10 mas) appear to rotate faster
than the overall sample of stars. However, a more accurate con-
sideration reveals that for a number of possible functional forms
of �(z) (e.g., �jzj, �jzj2), the most characteristic response is ex-
pected in the E�1

3 harmonic, because the E�1
1 harmonic is too

sensitive to the choice of centroid solar motion. Our choice of ve-
locity in Table 1, consistent with the estimation for the more
distant half of Hipparcos stars, is justified by the fact that the
OMM parameters are determined in the distance-weighted (or
proper-motion) space where distant stars are more significant,
and whatever kinematics anomalies the nearest stars may have
has little bearing on the OMM estimation problem. The rotation
gradient dipole E�1

1 emerges with a robust positive coefficient
e�1
1 ¼ 11:25 � 1:17 km s�1 kpc�1, which is consistent with a
negative gradient of �(z).

We performed direct simulations of the vector harmonic re-
sponse to a linear gradient�(z) ¼ �jzj for different values of � and
the height of the Sun above the plane z�. A good match with ob-
servationswas found for� ¼ �20 km s�1 kpc�1 and z� ¼ 15 pc,
which yielded a set of coefficients e�1

1 ¼ 11:41 � 1:17, h12 ¼
�2:04 � 0:47, and e�1

3 ¼ 0:75 � 0:22 km s�1 kpc�1, with the
remaining 21 harmonics being insignificant. Both electric harmon-
ics are in good agreement with our fit for all stars, whereas the
h12 coefficient is fairly close to the fit (�1:09 � 0:47, not shown
in Table 2). Therefore, a linear gradient of rotational velocity
of the thin disk of roughly�20 km s�1 kpc�1 is a plausible ex-
planation to the corresponding set of vector harmonic terms
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beyond the OMM. The detected pattern of tangential velocities
of Hipparcos stars consistent with this interpretation is shown
in Figure 2.

6. WARP AND THE ORIGIN OF H�1
1 AND H�1

2

The Milky Way disk is warped, as has been established from
the distribution of stars and neutral hydrogen. In this respect, our
Galaxy is not different from many other spiral galaxies exhibit-
ing a range of warp distortions. The origin of galactic warps is
not clear; a number of hypotheses have been proposed, includ-
ing the tidal interaction of the disk with the dark matter halo, the
influence of the bar, and the perturbation from a major satellite
galaxy. The Sun appears to be close to the line of nodes of theMilky
Way warp, and the upper rim of the disk is at ‘ ¼ 90� (in the
rotation direction). The height of the midsection above the plane
is quadratic with galactocentric distance in the model of Drimmel
et al. (2000): w(�) ¼ (�� �w)

2/15 kpc for � > �w, and zero for
� < �w. According toMomany et al. (2006) the warp begins well
within the solar circle (�w < ��), and the line of nodes deviates
from the solar radius by 15

�
.

The single most unexpected result of our analysis is the strong
model parameter L13 (Table 2), represented by the coefficient of
the first-degree magnetic harmonic H�1

1 , that is, a rigid rotation
around the direction �Y (see eqs. [A6]). The sign of this pa-
rameter implies that the stars move upward in the direction of the
Galactic center, downward in the opposite direction, away from
the center at the north pole, and toward the center at the south
pole. The signal-to-noise ratio on this parameter is about 6. The
extra statistically significant term h�1

2 detected by us in the local
velocity field may be related to the former. The pattern of tan-
gential velocities generated by these two magnetic harmonics,
6:21rH�1

1 � 1:20rH�1
2 , is shown in Figure 3. The main effect of

the higher degree harmonic is that the axis of rotation lies below
the plane at roughly b ¼ �20�, nearly obliterating the motion
in the north pole region, but retaining the galactocentric motion
near the south pole. The most conspicuous features are the gen-
eral upward motion of stars in the direction of the Galactic center,
and the downward motion of stars at ‘ ¼ 180�. It is tempting to
relate these two unexpected components to a kinematic signature
of the Galactic warp.

The shape of the warp, as traced by the distribution of neutral
hydrogen and dust, implies that the stars in the solar region are

involved in a general upward motion, since the starting rim of
the warp is within the solar circle (�w ¼ 6:5 kpc). This common
motion is indistinguishable from the vertical solar reflex motion,
but the model also implies a radial gradient of the upward ve-
locity, VZ;warp/ (�� �w), which is detectable in the proper-
motion field. In the near-plane zone, the differential warp motion
manifests itself as a downward stream at ‘ � 0� and an upward
stream at ‘ � 180�. Obviously, the pattern in Figure 3 is com-
pletely inconsistent with this prediction. Assuming for simplicity
that the Sun lies on the line of nodes, the linear Taylor expansion
of the local velocity field (eqs. [2]) should be expanded to in-
clude a vertical (Z ) component of velocity,

k(�) ¼ k0 þ �(�� �0) � k0 � �r cos ‘ cos b: ð14Þ

The corresponding tangential velocity field is

�v� ¼ ��r cos ‘ cos2b�b ¼ ��r
1

2
H�1

1 � 1

6
E1
2

� �
: ð15Þ

Thus, the differential warp motion is expressed by two OMM
parameters, L13 and M13. These two fitted parameters yield dis-
crepant estimates of the warp velocity gradient, � ¼ �2h�1

1 ’
�12 and 6e12 ’ þ4 km s�1 kpc�1. The former estimate from the
magnetic harmonic has the wrong sign, and its modulus is too
large for a credible differential warp. The electric harmonic E1

2

has the right sign, but it nearly vanishes for more distant stars
(� < 10 mas). Thus, the kinematical model of Galactic warp
does not furnish an adequate explanation for the presence of mag-
netic harmonics H�1

1 and H�1
2

. Samples of larger volumes are
needed to find out if these two harmonics are not a local feature,
and to find evidence of warp in the motion of field stars. It is
interesting to note that Drimmel et al. (2000) also found a negative
vertical motion of distant OB stars in the direction of Galactic
anticenter, in obvious contradiction to the predicted warp motion.
A nonstationary warp is one of the possibilities considered by
them. A precessing line of nodes is conceivable, but we find it dif-
ficult to reconcile the observed pattern of vertical motion, should
it bear on the subject at all, with a plausible precession model. It
appears instead that the line of nodes is stationary, but the shape of
warp changes to its opposite every 50Myr or so, curling one way
and then the other.

Fig. 2.—Velocity field ofHipparcos stars generated by the vertical gradient of
rotational velocity.

Fig. 3.—Velocity field of Hipparcos stars generated by the two unexpected
magnetic vector harmonics, H�1

1
and H�1

2 .
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7. CONCLUSIONS, AND BACK TO ASTROMETRY

Hipparcos stars with accurate trigonometric parallaxes rep-
resent only a tiny fraction of the Galactic population. Half of the
stars considered in this paper are within 112 pc, and 75% are
within 160 pc. The narrow horizon of our selection limits the ac-
curacy of vector harmonic terms describing the local tangential
velocity field in the most general and systematic fashion. Only
several major kinematical parameters can be determined with
confidence from such a limited data set. We determine the rel-
ative solar velocity with respect to all stars in our selection, and
to stars with measured distances greater than 100 pc. The latter
determination yieldsV� ¼ (9:9; 15:6; 6:9) � 0:2 km s�1, which
we add to the tangential velocities of all field stars before per-
forming a general decomposition of the velocity field onto vector
spherical harmonics. This decomposition provides values of A ¼
13:8 � 1:4 and B ¼ �13:4 � 1:2 km s�1 kpc�1 for the funda-
mental Oort constants of differential Galactic rotation. Since
Aþ B � 0, the local rotation velocity curve is nearly flat. Assum-
ing a galactocentric distance of 7.5 kpc for the Sun, a rotation ve-
locity of !0 ¼ 204(�0/7:5 kpc) km s�1 is derived.

Among other linear OMM parameters, we detect, most un-
expectedly, a strong signal carried by the first-degree magnetic
harmonic H�1

1 , which describes a rigid rotation of the stellar
field around the axis�Yopposite to the direction of Galactic ro-
tation. The estimated rate of this rotation is roughly 6 km s�1

kpc�1, or 1.3 mas yr�1 in proper motions along the principal
Galacticmeridian. Another unexpectedmagnetic harmonic,H�1

2 ,
nearly cancels out the outwardmotion at the north pole predicated
by the former harmonic, but retains the strong inward motion
around the south pole and the counter-directed vertical motions
near the Galactic plane. Differential vertical velocities naturally
arise from a kinematic model of the Galactic warp, but we find
that the sign of the local rotation is opposite to what is required to
raise the rim of the Galaxy above the plane in the first and second
quadrants. In other words, the local stars are expected to move
upward due to the warp, but we detect a negative differential ro-
tation.Analysis of velocity fields in amuch larger volume of space
is needed to make sure that this discordant rotation is not a local
feature, which would have crucial consequences for our under-
standing of the physics of the warp.

Only three statistically significant vector harmonic terms be-
yond the OMM are detected in this paper. One of them, the
electric multipole E�1

3 , is of special note, since together with a
positive residual dipole E�1

1 in the direction of Galactic rotation,
it is likely to advertise a vertical gradient of rotation velocity. A
similar gradient of rotational lag of �30 km s�1 kpc�1 has been
found in proper motions of more distant stars representing the
thick-disk population, but never reported for the thin disk do-
minating our sample. We estimate a gradient of ’�20 km s�1

kpc�1 for our sample of nearby stars limited to 200 pc. This re-
sult requires verification on a larger sample of thin-disk stars ex-
tending to 1 kpc.

Our concluding remark is that estimation of subtle effects in
the local kinematics pertaining to the Galactic structure and for-
mation history is based on the assumption that the Hipparcos
proper-motion data is free of large-scale systematic errors at
k1mas yr�1. No such errors have been reported in the literature,
which is not a strong argument because Hipparcos remains un-
paralleled at its level of global astrometric accuracy. The ma-
jor catalogs of proper motions, Tycho-2 (Urban et al. 2000) and
UCAC ( Zacharias et al. 2004), are calibrated onHipparcos stars;
therefore, systematic distortions of Hipparcos astrometry, if any,
are just copied over to these catalogs. Radio astrometric obser-

vations with VLBI have recently advanced to a comparable level
of accuracy in positions and proper motions and, being directly
tied to the International Celestial Reference Frame (ICRF), provide
an independent test for theHipparcos reference system (Boboltz
et al. 2007). This important external check is unfortunately
limited by the small number of optically bright radio stars, but
the available accuracy of VLBI proper motions (approximately
1.7 mas yr�1) enables Boboltz et al. to state that the relative spin of
theHipparcos proper-motion system is much less than 1 mas yr�1

about each axis. This result confirms that the strong magnetic
harmonicH�1

1 representing a spin around the�Y direction is not
an artifact. Another significant astrometric development of late is
the SPM3 catalog, which provides high-quality absolute proper
motions for a large sample of distant and faint stars, albeit in a
small fraction of the sky (Girard et al. 2004). This catalog pro-
vides an independent view of the local stellar velocity field in the
surveyed area of the sky.

The research described in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration.

APPENDIX A

VECTOR SPHERICAL HARMONIC DECOMPOSITION
OF A PROPER-MOTION FIELD

As is customary in studies of Galactic dynamics, we make
use of the Galactic coordinate system (X ; Y ; Z ) in which the
X-axis is pointing toward the Galactic center, the Y-axis toward
the direction of Galactic rotation, and the Z-axis toward the north
pole. For each star, a triad of unit vectors (r; t‘; tb) is defined,
with

tr ¼
cos ‘ cos b

sin ‘ cos b

sin b

0
B@

1
CAt‘ ¼

�sin ‘

cos ‘

0

0
B@

1
CAtb ¼

�cos ‘ sin b

�sin ‘ sin b

cos b

0
B@

1
CA;

ðA1Þ

where t‘ and tb define the tangential coordinate directions
toward increasing Galactic longitude ‘ and the north pole, respec-
tively. The proper-motion vector of the object is traditionally
projected onto the locally tangential coordinate vectors; that is,
m ¼ �‘ cos bt‘ þ �btb.

A global proper-motion field of a large set of celestial objects
can be represented by the expansion

m(‘; b) ¼
X1
n¼1

Xn
m¼�n

hm
n H

m
n (‘; b)þ emn E

m
n (‘; b)

� �
; ðA2Þ

where ‘ and b are Galactic longitudes and latitudes, andHm
m and

Em
n are orthogonal vector harmonics, which we call magnetic

and electric vector harmonics, respectively. These vector harmonics
are derived via partial derivatives of the scalar spherical harmonics
over angular coordinates, viz.,

Hm
n (‘; b) ¼

@S m
n (‘; b)

@b
t‘ �

1

cos b

@Sm
n (‘; b)

@‘
tb

� �
;

Em
n (‘; b) ¼

1

cos b

@S m
n (‘; b)

@‘
t‘ þ

@Sm
n (‘; b)

@b
tb

� �
: ðA3Þ
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Spherical harmonics S m
n are counted by degrees n ¼ 0; 1; : : :

and orders m ¼ �n; �nþ 1; : : :; n. Explicitly,

S m
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

2


(n� m)!

(nþ m)!

r
Pm
n (sin b) cosm‘; m > 0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ 1

4


r
P0
n(sin b); m ¼ 0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ 1

2


(n� jmj)!
(nþ jmj)!

s
Pjmj
n (sin b) sin jmj‘; m < 0;

8>>>>>>>>><
>>>>>>>>>:

ðA4Þ

where Pm
n are the associated Legendre polynomials. The first

pair of vector harmonics is generated from the scalar zonal har-
monic S01 , with the electric component cos btb and the magnetic
component cos bt‘. The electric vector harmonics for n � 2 in
angular coordinates are

E�1
1 ¼ �cos ‘t‘ þ sin ‘ sin btb;

E0
1 ¼ cos btb;

E1
1 ¼ sin ‘t‘ þ cos ‘ sin btb;

E�2
2 ¼ 6 cos 2‘ cos bt‘ � 6 sin 2‘ cos b sin btb;

E�1
2 ¼ �3 cos ‘ sin bt‘ � 3 sin ‘ cos 2btb;

E0
2 ¼ 3 cos b sin btb;

E1
2 ¼ 3 sin ‘ sin bt‘ � 3 cos ‘ cos 2btb;

E2
2 ¼ �6 sin 2‘ cos bt‘ � 6 cos 2‘ cos b sin btb; ðA5Þ

and the magnetic vector harmonics for n � 2 are

H�1
1 ¼ sin ‘ sin bt‘ þ cos ‘tb;

H 0
1 ¼ cos bt‘;

H 1
1 ¼ cos ‘ sin bt‘ � sin ‘tb;

H�2
2 ¼ �6 sin 2‘ cos b sin bt‘ � 6 cos 2‘ cos btb;

H�1
2 ¼ �3 sin ‘ cos 2bt‘ þ 3 cos ‘ sin btb;

H 0
2 ¼ 3 cos b sin bt‘;

H 1
2 ¼ �3 cos ‘ cos 2bt‘ � 3 sin ‘ sin btb;

H 2
2 ¼ �6 cos 2‘ cos b sin bt‘ þ 6 sin 2‘ cos btb: ðA6Þ

Note that the normalization coefficients of the generic spher-
ical harmonics (eq. [A4]) are omitted in these formulas.

APPENDIX B

THE OGORODNIKOV-MILNE MODEL VIA VECTOR
HARMONICS FORMALISM

The linear OMM of the local velocity field in its general ma-
trix form can be written as (du Mont 1977)

V ¼
M11 M12 M13

M12 M22 M23

M13 M23 M33

0
B@

1
CAr þ

0 �L12 �L13

L12 0 �L23

L13 L23 0

0
B@

1
CAr;

ðB1Þ

whereV is the systemic part of the velocity field as a function of
the position vector r. It is assumed in the following that posi-
tions are determined with respect to the solar system barycenter;
any shift of the coordinate system origin results in an additional
constant translation term. For convenience, the matrix of trans-
formation is split into the symmetric (shear) part M and the an-
tisymmetric traceless (rotation) part L. It is readily seen that the
matrix M describes the gradient-type distortions of the field,
and the L part represents rigid rotations, or spins, around the
three coordinate axes.
After a small manipulation, the tangential velocity compo-

nents are

Vl

r
¼ (V = t‘)

r
¼ �M11 þM22ð Þ sin ‘ cos ‘ cos b

þM12 cos 2‘ cos b�M13 sin ‘ sin b

þM23 cos ‘ sin bþ L12 cos b

þ L13 sin ‘ sin b� L23 cos ‘ sin b;

Vb

r
¼ (V = tb)

r
¼ �M11 cos

2‘�M22 sin
2‘þM33

� 	
sin b cos b

�M12 sin 2‘ sin b cos bþM13 cos ‘ cos 2b

þM23 sin ‘ cos 2bþ L13 cos ‘þ L23 sin ‘:

Comparing these equations with the trigonometric expressions
for low-degree vector spherical harmonics (Appendix A), the
following relations of proportionality are established:

M12 / e�2
2 ;

M23 / �e�1
2 ;

M13 / �e12;

D1 / e22 ;

D2 / e02;

L12 / h01;

L13 / h�1
1 ;

L23 / �h11; ðB2Þ

where

D1 ¼ 1

2
M11 �M22ð Þ;

D2 ¼ M33 þ
1

2
M11 þM22ð Þ: ðB3Þ

Clearly, all nine parameters of the OMM cannot be deter-
mined from a proper-motion field, since an isotropic dilation
(M11 ¼ M22 ¼ M33) results in radial velocities only. This is why
only eight parameters of themodel appear in the vector harmonic
decomposition of a proper-motion field (Vityazev & Shuksto
2004).
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We further establish the relations between the constants of
the OMM and the four constants (A; B; C; and K ) of the Oort
two-dimensional model by matching the terms in the proper-
motion equation of the latter (Torra et al. 2000):

4:741m ¼ (A cos 2‘ cos bþ B cos b� C sin 2‘ cos b)t‘

þ (�A sin 2l‘ sin b cos b� C cos 2‘ sin b cos b

� K sin b cos b)tb: ðB4Þ

The corresponding equation for themore general OMM in terms of
vector harmonics is

4:741m ¼ L13H
�1
1 þ L12H

0
1 � L23H

1
1 þ

1

6
M12E

�2
2 � 1

3
M23E

�1
2

� 1

3
D2E

0
2 � 1

3
M13E

1
2 þ

1

6
D1E

2
2 ; ðB5Þ

where M12 ¼ A, L12 ¼ B, D1 ¼ C, and D2 ¼ K.
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